If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+42x-35=0
a = 3; b = 42; c = -35;
Δ = b2-4ac
Δ = 422-4·3·(-35)
Δ = 2184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2184}=\sqrt{4*546}=\sqrt{4}*\sqrt{546}=2\sqrt{546}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{546}}{2*3}=\frac{-42-2\sqrt{546}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{546}}{2*3}=\frac{-42+2\sqrt{546}}{6} $
| 1935829+n=248305+235836 | | 5+n=10385302 | | 1-4x2=65 | | 3x+24/2x+7=2 | | 2-3(x-2(-4(x+1)+3x-2)+3)=x-5 | | y-6*(y)^(1/2)=55 | | 1.2x+0.3=0.4 | | t÷3-6=9 | | -2=w-2/5 | | 1,2x+0,3=0,4 | | -1+10x-3-4-7x=7-2x-4x+3 | | y-6*y=55 | | 1b/13-4b/13=24/13 | | 5y^2+40y+25=0 | | f+1/3=1/12 | | 9(X-5)=7x-25 | | -7w(w+1)=-9w-27 | | 139x+114=138x | | -5x+17=4(x-7) | | -5x=4x-11 | | x−8=2 | | 15=3y-7.5y-2.5y+1 | | 175x+37=7x | | x^2+4=(x+1)+(x+3) | | -3y+5y+15=17 | | -5v+3v-15=-27 | | 10x+4×(3-2x)-6=8 | | x+134=3x+64 | | (x-1/2)^3=0 | | 22=-7u+4u+28 | | 6x/13=15 | | 3/8=n=32 |